Project 418

Using web architecture patterns to address discovery and facilitate approaches to Open and FAIR

Placing data in context
Overview

A general overview of P418

FYI: 418 == April 2018, our project end date
Background

EarthCube CDF Registry Working Group

Focused on elements of facility metadata

Collaboration with RE3Data

Elements included exploring a pattern around self-hosted structured data extending schema.org/Organization

Structured data harvested via the web

Motivation

The existence of schema.org/Dataset was known and being used by some RWG members

There was interest in applying experience in RWG to facility datasets

There was also known interest and use of this pattern elsewhere in the community
Drivers & Philosophy

FAIR patterns:

Enabling FAIR Data in the Earth and Space Sciences (Community lead, AGU convened)

How can we help address “F” in a scalable, standards based and easy to implement manner?

Build a sustainable practice on web standards

Web architecture based
- Leverage web native protocols & patterns that are all around us

Leverage the known and existing
- Web publishing workflows of providers
- Publishing patterns of the web
- Developers tools & libraries
- Access patterns of the consumers

Image credit: wikimedia commons
Leveraging

P418 Helps address:

Who (People and Organizations)

- Citation
- What's been done
- What is measured and how
- Where (spatial)
- Publications

Massive ecosystem of identifiers (DOI, Orcid, IGSN, etc), vocabularies, publishing houses and data systems to leverage here!

Overall: Helps place data in context

See references for sources (Google, BioShare, EarthCube, COPDESS, Enabling Fair Data)
SCOPE: Working with a set of NSF data facilities to *demonstrate publishing approaches* for schema.org/Dataset and extensions (special thanks to them!)

Use schema.org as a base vocabulary with extensions:

1. Connecting to existing vocs (RE3, GeoLink, OntoSoft, Geoscience Ontology, DCAT, etc)
2. This is a key point: *The patterns provides a means to operationalize this mechanism for data context inside data facilities in a manner aligned with existing web publishing workflows*

SCOPE: *Implement harvesting and interface packages* to further explore the full pipeline and provide feedback.
P418: Principles over Project

- Anyone can take this approach concept and implement it!
 - Example of Flyover country and *disintermediating* P418 implementation packages
- Reduce a priori knowledge needed by all actors (facilities, developers, scientists)
- Leveraging existing work inside and outside EarthCube
Engaged in the community: Google Research, EarthCube (CDF, RCNs, etc) ESSO PAT team, Enabling FAIR Data, and more

Working with initial data providers (BCO-DMO, LinkedEarth, Neotoma, OpenCore, more coming)
- Vocabulary elements and best practices (reference docs and voc repos)
- Developing connections with existing terms and vocabularies
 - GeoLink, IGSN, PROV, EarthCollab, DCAT, others...
- Exploring impact on web publishing workflows for sites

Implementation elements (used to provide feedback to the approach)
- Harvesting code (All at github, see references)
- User Interfaces GeoDex, Notebooks
Growing Community of Interest

- Google Research
 - data search tool based on this approach in the works
 - ⅓ of web is using structured data in some form
- DataCite
 - APIs for schema.org views
 - RE3data connection
- Bioschemas
- Enabling Fair Data Project
- EarthCube
 - CDF Registry Working Group in connection with RE3Data
 - ESSO Project 418 Data Partners
- Federal interest: NOAA, USGS, NASA
- International: Pangea, Marine.ie, more....
- RDA task force might be in the works???
P418 provider partners

Key/foundational partners in the approach

Also good people to talk to for their POV and opinion.

* Type schema.org/Dataset providers (approx 60K datasets currently)

- BCO-DMO*
- IEDA
- IRIS
- Linked Earth*
- Martha’s Vineyard Coastal Observatory
- Neotoma*
- Open Core*
- Open Topography
- R2R
- UNAVCO
- UNIDATA
Conclusion

Place Data in Context
Enable Value add opportunities
Principles over Project
Use web architecture patterns in a sustainable and scalable manner

- Eric Lingerfelt EarthCube Technical Officer
- Douglas Fils Ocean Leadership “data and stuff”
- Adam Shepherd BCO-DMO Technical Director

This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by National Science Foundation grant number ACI-1548562.
References used in this presentation:

- EarthCube CDF Registry working group
 - https://github.com/fils/CDFRegistryWG
 - https://repograph.net/html/webslides/decks/cdfrwg.html#slide=1
- ESIP Lab Provisium: https://github.com/ESIPFed/provisium
- EarthCube Project 418: https://github.com/earthcubearchitecture-project418
- Geoscience Ontology: http://geoscienceontology.org/
- OntoSoft: http://www.ontosoft.org/
- GeoLink: http://www.geolink.org/
- COPDESS: http://www/copdess.org/
Technical

A few more technical slides for when needed
Overview

Publishing Harvesting Value Add Userspace

Sustainable practices Implementations & Uses
Publishing/Basics

- Structured data in HTML (JSON-LD with type schema.org/Dataset)

- Need to be able to work script header tag into documents

- Recommended to use a sitemap for publishing

- Assessing impact on websites
 - A real need for performance and optimization of sites if crawling becomes an access method
 - Content negotiate for JSON-LD?
Publishing/Basics (HTML + JSON-LD)
Using schema.org as a basis with a focus on type Dataset. Then providing example and reference implementation of using external vocabularies to address domain specific needs.

1. To produce quality schema.org markup with additional extensions to schema.org classes to help improve harvesting technologies.
2. Produced markup will pass the Google Structured Data Testing Tool with 0 errors.
Tools and guides:

- P418 guide
 https://github.com/earthcubearchitecture-project418/p418Docs/blob/master/publishing.md
- Google: Structured data testing tool
 https://search.google.com/structured-data/testing-tool/u/0/
- JSON-LD playground
 https://json-ld.org/playground
Implementation: Harvesting approach

Crawler at: https://github.com/earthcubearchitecture-project418/crawler
- spatial (geohash)
- index (bleve)
- RDF (blazegraph) (Need to address blank nodes from JSON-LD)
- Temporal (later)

Leveraging JSON-LD framing
Implementation: Interfaces

The generated indexes are exposed by a collection of APIs

Web implementation of APIs for testing https://geodex.org

Notebooks https://github.com/earthcubearchitecture-project418/p418Notebooks
Google Data search is likely to be similar to the Google Careers “job” search. Job search is also driven by schema.org structured data.
Facilitating connection of data to potential actions and connecting to native data types in R or Python for example
Side Focus: Provenance

ESIP Lab: Provisium
https://github.com/ESIPFed/provisium

• An exploration in implementing the PROV-AQ
• Allows for exposing PROV elements via web architecture
• Can be connected in via JSON-LD housing schema.org/Dataset

prov:pingback
prov:has_provenance
prov:*
Side Focus: Component Driven Landing Pages

Landing Pages + Web Components

Leveraging machine readable data to generate human focused “snippets”.

Citations, maps, parameter listing and more

- More efficient development
- Shared approaches
- Promoting best practices to a wider set of providers
Conclusion

Place Data in Context
Enable Value add opportunities
Principles over Project
Use web architecture patterns in a sustainable and scalable manner

- Eric Lingerfelt EarthCube Technical Officer
- Douglas Fils Ocean Leadership “data and stuff”
- Adam Shepherd BCO-DMO Technical Director

This work used the Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Science Foundation grant number ACI-1548562.
Errata slide: Geoinformatics Lattice

RE3
Orchid
Datacite
CodeMeta
etc...

AGU FAIR
COPDESS
Scholix, Hypothesis
etc...

Leveraging the web to build a “data lattice”. A strong, sustainable and persistent interconnection of elements that supports a network of actors and actions on that data. Scoping provenance, citation, annotation, linking and more.